Spiratec Steam trap monitoring

Why monitor steam traps?

Spirax Sarco continues to advise on the efficient use of steam and its associated plant to many organisations in Industry and Commerce. This service provides the proper association needed between products and systems so that energy is used as effectively and efficiently as possible around the plant.

One such product is the steam trap - an essential part of any steam system, releasing hot condensate from the process for recovery and use elsewhere on the plant.

Today's steam trap is the product of over 100 years of development and is more reliable now than ever before. But failures will inevitably occur, and when they do, you will probably want to know - fast.

Why? Because a failed steam trap is a potential for saving money!

A steam trap can block or leak. Blockages can increase production times and reduce performance, steam leaks will lose energy and jeopardise safety.

Fast and correct identification of trap failure is the key to:

Saving process energy.	Optimising process performance.	Optimising safety levels.
Thereby reducing:		
Productivity costs and times.	Steam raising cost.	Emission loss from boiler plant.
Environmental impact.	Maintenance costs.	Repair costs.

The need to save money is real and obvious. The need to save energy now is no less important than ever before. Some reasons for doing so remain the same. Some, such as environmental legislation, require us to adopt new ideals about the way we use energy. Whatever drives you to meet these objectives, Spirax Sarco can help!

Any steam management system should include steam trap monitoring as a basic tool to reduce waste, costs, and environmental liability. Whether this is conducted manually or automatically will depend on the size of the site, the number of traps, the number of personnel, and the urgency of repair.

The cost of ignoring leaking steam traps?

Steam leaks are costly in both a financial and environmental sense and therefore need prompt attention to ensure your steam system is working at its optimum efficiency with a minimum impact on the environment. For example, for each litre of heavy fuel oil burned unnecessarily to compensate for a steam leak, approximately 3 kg of CO2 are emitted to the atmosphere.

Steam traps can have different sized orifices to suit different conditions. If a trap leaks steam, the amount wasted will depend on the size of the trap and the steam pressure. The cost of waste will also depend on the number of traps and the operating time. A simple example is given below.

Table 1 Typical steam wastage and annual costs due to leaking steam traps

Trap size	Average orifice size	St	team loss (kg/	'h)	Typical annual cost £000s			
-	in steam traps (mm)	6 bar g	14 bar g	32 bar g	6 bar g	14 bar g	32 bar g	
DN15	3.0	8	19	43	13	32	72	
DN20	5.0	24	53	119	40	89	200	
DN25	7.5	55	121	270	92	203	453	
DN40	10.0	98	214	478	164	359	802	
DN50	12.5	152	335	747	255	562	1 254	

A process plant has 200 steam traps of which 10% fail annually. The average trap size is DN20 and the steam pressure is 14 bar g.

The plant runs 24 hours a day, 7 days a week for 50 weeks a year = 8 400 hours a year

Average number of traps failing over a year (10% of 200) = 20 traps From the chart, the steam loss per trap = 53 kg/h

Steam loss per year for the total plant $= 20 \times 53 \times 8400$ tonnes per annum

Steam wasted each year = 8900 tonnes.

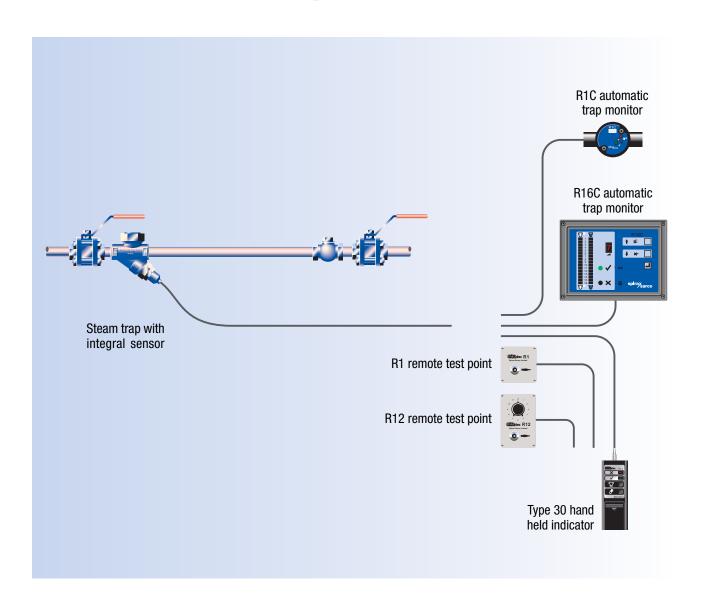
The cost of overlooking leaks: If the overall cost of steam for this plant were £10 per tonne, the direct cost of ignoring these leaking steam traps would be £89 000 each year, equivalent to well over a million litres of fuel oil!

The cost to the environment is that over 3 000 tonnes of CO₂ would be dumped into the atmosphere. The 'global 'Kyoto' Agreement is designed to curb environmental waste, and National agreements are designed to incur energy taxes on inefficient plant.

Note: Leaking steam also has to be replaced with chemically treated water. A costly operation.

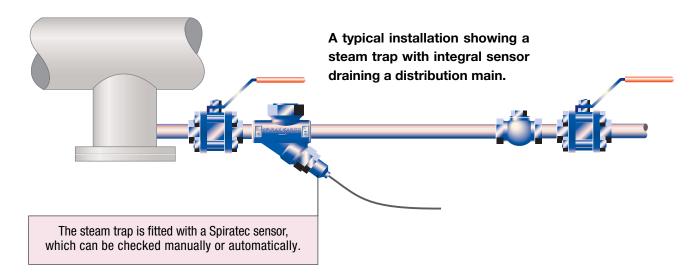
The cost of ignoring blocked steam traps?

Water will not be removed from the process, with the result that both safety and performance are compromised. In the case of the latter, the cost will depend on the process. In the case of the former the cost can prove incalculable.


The answer is an effective monitoring procedure

In order to reduce fuel costs, emission surcharges, and maximise process efficiency, it is important that four simple measures are taken:

- Steam trap failures are identified soon after they occur.
- Steam trap failures are identified correctly without proper means, it is easier to wrongly identify a working trap than correctly identify a faulty one.
- Steam trap failures are corrected as soon as they are identified.
- The monitoring system can meet the above three criteria, accurately, repeatedly, and continuously.


There are many types of steam trap monitoring devices on offer. Only one satisfies all four of the above considerations. It is permanently fitted, constantly guarding against leaks and waterlogging and giving an immediate and correct response to fault conditions.

The answer is Spiratec

The Spiratec system

Where does the Spiratec system fit?

How does the Spiratec system work?

The hub of the Spiratec system is a sensor capable of distinguishing between steam and condensate. It can be part of a trap or a separate chamber.

If the steam trap is operating correctly, the sensor will be immersed in hot condensate. If the steam trap is leaking, it will be immersed in steam. If the steam trap is blocked, it will be immersed in cool condensate.

As the sensor is permanently fitted in the heart of the trap, it is continually alert to any trap malfunction.

Faults can be identified manually or automatically, and locally or remotely.

Whatever method suits your system, nothing could be simpler, more foolproof or cost effective.

User benefits

- Immediate indication of 'correct operation', 'trap waterlogged' or trap 'leaking steam'.
- Trap status indicated by coloured lights no skilled labour needed.
- Separate chambers or integral sensor options to suit all steam trap system applications.
- Compatible with BEMS/EMS/SCADA system for efficient system monitoring.
- Reduced energy losses and improved system efficiency leading to increased profits.
- Remote test points allow inaccessible traps to be monitored during trap surveys.

Selecting a Spiratec system

Manual hand held monitoring steam leak detection

Advantages:

Cheap to install.

You choose when to monitor.

Faults positively identified.

Local or remote diagnosis.

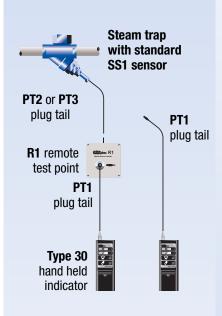
Automatic continuous monitoring steam leak detection

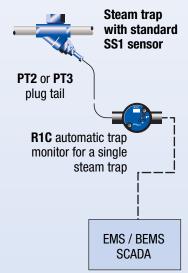
Advantages:

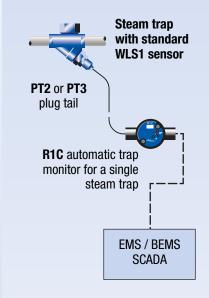
Local or remote diagnosis.
Fully automatic diagnosis.
Continuous assessment.
Faults positively identified.

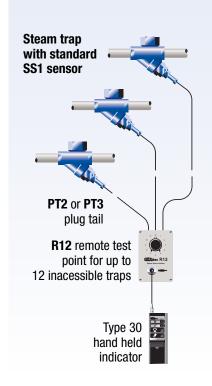
Automatic continuous monitoring steam leak and waterlogging detection

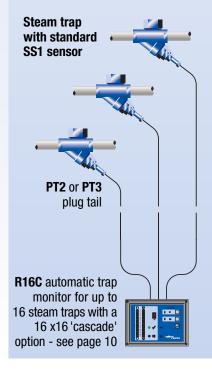
Advantages:

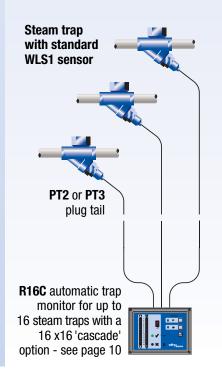

Local or remote diagnosis.

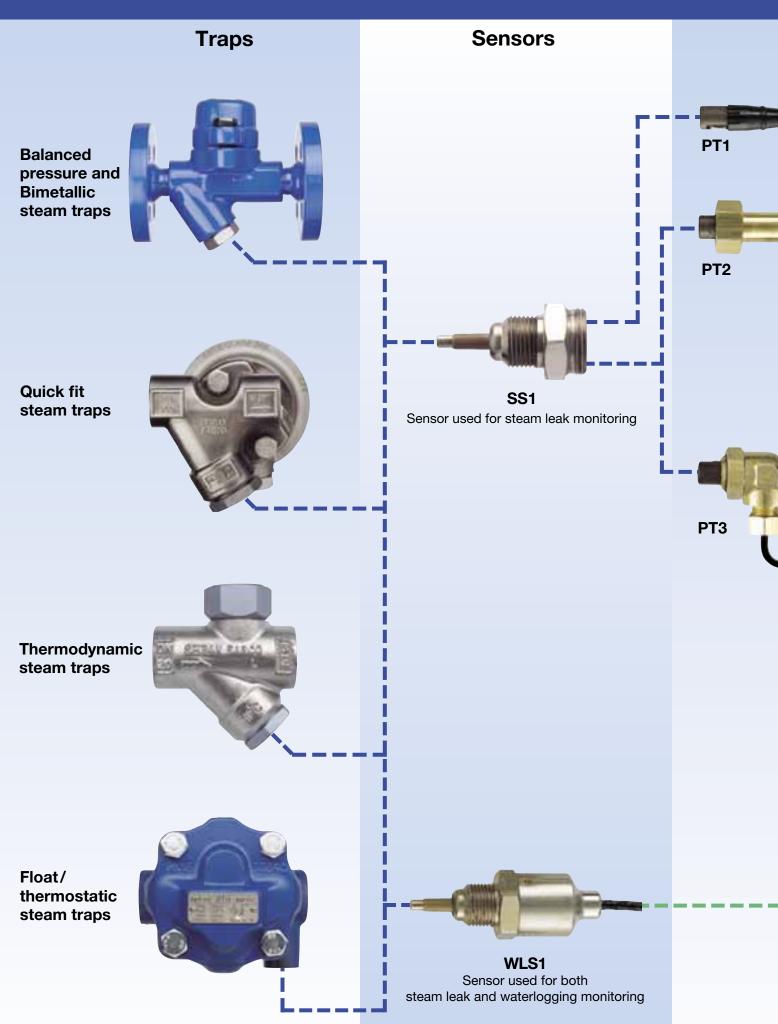

Fully automatic diagnosis.

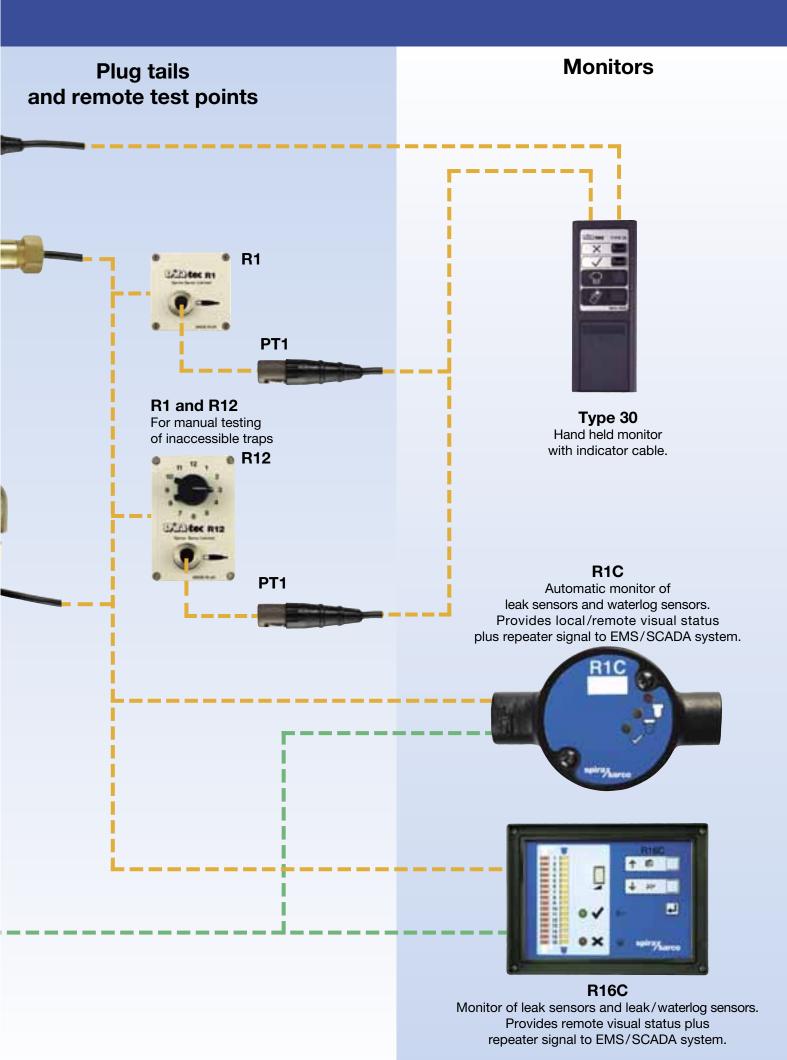

Continuous assessment.


Faults positively identified.


Leaks and blockages diagnosed.







Steam monitoring equipment

Application

Selection of steam traps and

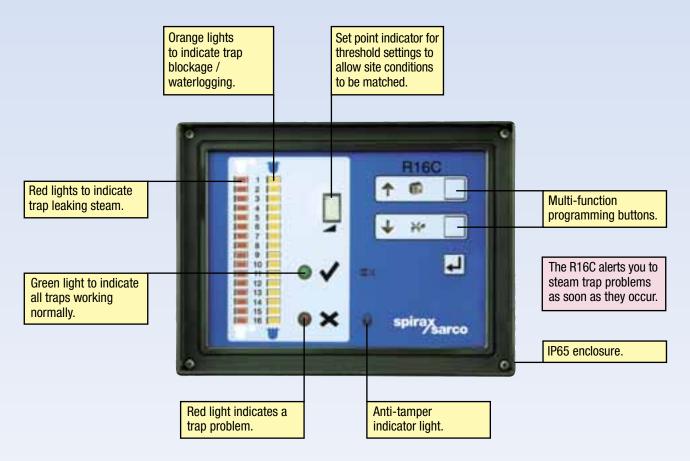
Amaliantia	
Application	1
	Boiling pans - fixed
	Boiling pans - tilting
Canteen	Boiling pans - pedestal
equipment	Steaming ovens
	Hot plates
	Bulk oil storage tanks
	Line heaters
Oil transfer/ storage	Outflow heaters
010.490	Tracer lines
	Jacketed pipes
Hospitals	Autoclaves and sterilisers
	Drying coils (continuous)
la di catala l	Drying coils (grid)
Industrial dryers	Drying cylinders
	Multi-bank pipe dryers
	Multi-cylinder sizing machines
	Garment presses
Laundry equipment	Ironers and calenders
equipment	Dry cleaning machines
	Tumble dryers Multi-platen presses
	(parallel connections)
Presses	Multi-platen presses
1103003	(series connections)
	Tyre presses
	Boiling pans - fixed
	Boiling pans - tilting
	Brewing coppers
_	Digesters
Process equipment	Evaporators
• •	Hot tables
	Retorts
	Bulk storage tanks
	Vulcanisers
	Calorifiers
Space	Heater batteries
Space heating	Radiant panels and strips
	Radiators and convection cabinets
	Overhead pipe coils Horizontal runs
	Separators
Steam mains	Terminal ends
	Header drainage
	Process vats
	(rising discharge pipe)
	Process vats
Tanks	(discharge pipe at base)
and vats	Small coil heated tanks
	(quick boiling)
	Small coil heated tanks
	(fast boiling)

Steam trap	Recommended sensor			
	WLS1	SS1		
BP or IFT		SS1		
IBP		SS1		
IBP or IFT		SS1		
IBP		SS1		
IBP or IFT		SS1		
IFT	WLS1			
IFT	WLS1			
IFT	WLS1	20.1		
IBP or ITD		SS1		
IBP or ITD	11/11/04	SS1		
IBP or IFT	WLS1			
IFT, ITD or IBP	WLS1			
IBP or ITD	WLS1			
IFT IDD as ITD	WLS1			
IFT, IBP or ITD IFT	WLS1 WLS1			
ITD or IFT	WLST	SS1		
	WLS1	551		
IFT, IBP or ITD IFT or ITD	WLSI	SS1		
IFT OF TID	WLS1	७७ ।		
IIF1	WLOI			
ITD or IFT	WLS1			
ITD	WLS1			
IBP, ITD or IFT	WLS1			
IFT, ITD or IBP	WLS1			
IFT	WLS1			
IFT	WLS1			
IFT or ITD	WLS1			
IFT	WLS1			
IBP, ITD or IFT		SS1		
IFT	WLS1			
IFT	WLS1			
IFT or ITD	WLS1			
IFT	WLS1			
IFT	WLS1			
IFT or ITD	WLS1	004		
IBP or IFT		SS1		
IBP or IFT	14/1 04	SS1		
IFT or ITD	WLS1			
IFT or ITD	WLS1			
IFT or ITD IFT or ITD	WLS1 WLS1			
IBP, IFT or ITD	WLS1			
IBP, IFT or ITD	WLS1			
IBP or IFT		SS1		
וטו טו ורו		JJ 1		
IBP		SS1		

monitoring equipment

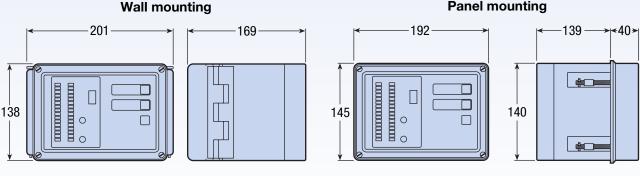
	ual or matic	Plug tails from trap to test point	Remote test point	Plug tails from trap or test point to monitor	Monitor	EMS/ to SCADA
Traps accessible Manual ———		_	-	PT1	Type 30 Hand held unit	No
	Traps non- accessible	PT2 or PT3	Single R1 or Multi R12	PT1	Type 30 Hand held unit	No
	iic	_	-	PT2 or PT3	Single R1C	Yes
Automat	auc	-	_	PT2 or PT3	Multi R16C	Yes
Automatic		_	_	The plug tail is an integral part of the WLS1 sensor	Single R1C	Yes
Automatic	ilo	-	_	The plug tail is an integral part of the WLS1 sensor	Multi R16C Diode pack required	Yes

Product details and dimensions (For further details on steam


R16C automatic trap monitor

The R16C automatic trap monitor enables up to 16 steam traps to be continuously monitored. If they are all working correctly a single green light is illuminated. If one or more of the steam traps is passing steam, then the corresponding red 'fail' light is illuminated and the green light is extinguished. If one or more of the steam traps is blocked with dirt or has failed closed then the corresponding orange 'waterlogging' light is illuminated and the green light is extinguished. The waterlogging option can be disabled for any of the traps if desired.

Both the waterlogging temperature and the steam/condensate conductivity threshold levels can be easily altered to suit specific installation requirements.


The R16C can easily be incorporated into most computerised management systems. It can also be made tamper-proof. It can be sited considerable distances away from the sensor chambers.

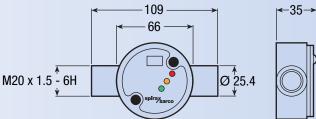
The unit can be installed on a cascade basis. One 'master' box will monitor up to 16 x R16C 'local' boxes. A red light on the 'master' box will indicate which 'local' box is registering a faulty trap. Inspection of that 'local' box will then identify the specific trap.

The R16C steam trap monitor is available for 90 - 240 Vac or 24 Vac supplies and for either wall mounting or panel mounting.

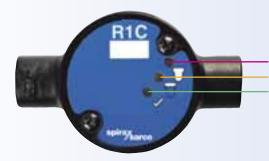
The box is ABS plastic and has an IP65 enclosure rating, when fitted with suitable cable glands.

Weight 1.88 kg

Dimensions (approximate) in mm


Weight 1.66 kg

R1C automatic trap monitor


The R1C will monitor the performance of a single steam trap. It will indicate whether the trap is operating correctly, passing live steam or has failed closed. It does this by means of coloured status lights on the unit.

Analogue and digital outputs allow it to be connected directly to BEMS/EMS or SCADA systems to indicate steam trap status remotely.

The R1C requires a 24 Vdc supply and is available with either npn or pnp output. The enclosure is cast malleable iron and has an IP65 enclosure rating when fitted with suitable cable glands.

Dimensions (approximate) in mm

Red light indicates trap leaking steam.

Orange light indicates trap blockage / waterlogging.

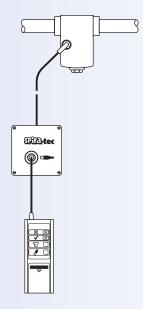
Green light indicates trap working correctly.

Type 30 indicator and remote test points

The Type 30 indicator is simply plugged in and removed as each trap is tested, making it ideal for steam trap surveys. It will immediately indicate which traps are leaking steam. It is convenient to use when traps are within easy reach. In roof trusses, floor ducts and other awkward places, remote test points are the solution.

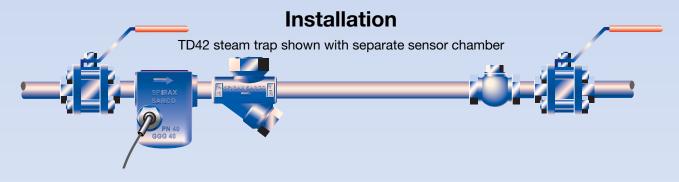
Where remote test points are used a heat resistant plug tail is permanently connected to the sensor in the sensor chamber or the steam trap and then wired to a test point (single or 12-way) sited at any convenient position. Trap checking is carried out by plugging the Type 30 indicator into the test point instead of the sensor.

The Type 30 indicator is a hand held, portable, battery operated instrument with an enclosure rating to IP20. It is supplied complete with 1.25 m cable.



R1 remote test point for a single inaccessible trap.

R12 remote test point for up to 12 inaccessible traps.

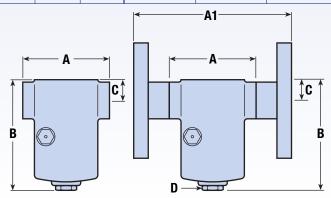


Dimensions / weights (approximate) in mm and g

	Height	Width	Depth	Weight
Type 30	157	62	25	130
R12	120	80	55	300
R1	80	82	55	200

Sensors in chambers

For steam traps outside the scope of the intrap range, separate sensors can be fitted in the pipeline. The same benefits apply as for the inline traps.



Range and options

ST14 Steel	ST16 Stainless steel	ST17 SG iron
Screwed BSP or NPT, socket weld Flanged BS 4504 PN40, ANSI 150 and 300, BS 10 tables H and J	Screwed BSP or NPT, socket weld Flanged BS 4504 PN40, ANSI 150 and 300, BS 10 tables H and J	Screwed BSP or NPT

Dimensions/weights (approximate) in mm and kg

Size	½" DN15	3 ₄ " DN20	1" DN25	1½" DN40	2" DN50	½" DN15	3/4" DN20	1" DN25	1/2" -	3/4" -	1" -
Α	75	75	120	252	252	75	75	120	72	72	120
A1	130	150	185	393	393	130	150	185	-	-	-
В	101	101	120	215	215	101	101	120	89	89	120
C	23	23	28	45	45	23	23	28	23	23	28
D	1/2"	1/2"	3/4"	1"	1"	1/2"	1/2"	3/4"	-	-	3/4"
Weight Scr	0.82	0.82	2.20	22.0	22.0	0.82	0.82	2.20	1.2	1.2	2.2
Flg	2.30	2.80	4.60	27.5	29.0	2.30	2.80	4.60	-	-	-

Some of the products may not be available in certain markets.

Spirax-Sarco Limited, Charlton House, Cheltenham, Gloucestershire, GL53 8ER UK. Tel: +44 (0)1242 521361 Fax: +44 (0)1242 573342 E-mail: Enquiries@SpiraxSarco.com Internet: www.SpiraxSarco.com

